

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

LINE INTENSITY MEASUREMENT FOR THE ν_1 AND ν_3 BANDS OF PHOSPHINE

Carlos B. Suárez^a

^a Centro de Química Inorgánica, Universidad Nacional de La Plata y Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, La Plata, Argentina

Online publication date: 14 November 2002

To cite this Article Suárez, Carlos B.(2002) 'LINE INTENSITY MEASUREMENT FOR THE ν_1 AND ν_3 BANDS OF PHOSPHINE', *Spectroscopy Letters*, 35: 6, 757 – 767

To link to this Article: DOI: 10.1081/SL-120016278

URL: <http://dx.doi.org/10.1081/SL-120016278>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SPECTROSCOPY LETTERS
Vol. 35, No. 6, pp. 757–767, 2002

LINE INTENSITY MEASUREMENT FOR THE ν_1 AND ν_3 BANDS OF PHOSPHINE

Carlos B. Suárez*

Centro de Química Inorgánica, Facultad de Ciencias
Exactas, Universidad Nacional de La Plata y Consejo
Nacional de Investigaciones Científicas y Técnicas de la
República Argentina, C.C. 962, 1900, La Plata,
Argentina

ABSTRACT

We have obtained laboratory spectrum of PH₃ in the important 5 μm observational window of Jupiter, between 2200 and 2400 cm⁻¹ and measured the intensity coefficients at 294 K for 138 individual lines of the ν_1 and ν_3 bands, for which the band strength are reported. As PH₃ is known to be present in Jupiter, as well as in Saturn, as a minority component appears indeed as a good tracer and the investigation of line parameters in the laboratory is hence of importance for astrophysical applications.

Key Words: ν_1 and ν_3 bands; Phosphine; Astrophysical measurements

*E-mail: suarez@nahuel.biol.unlp.edu.ar

INTRODUCTION

The investigation of phosphine in the 4–5 μm range of the spectra of Jupiter and Saturn has produced over the last years important information on this minor constituent in the deep atmosphere layers of both planets. Mean vertical profile and elemental ratio P/H were attained from ground-based, airborne, and from space probe spectra. In view of planetary spectra expected in the future, spatial and temporal PH_3 variations should be more extensively investigated. PH_3 appears indeed as a good tracer of convective circulation and nonequilibrium chemistry on outer planets, and to determine chemical composition and physical state of their atmosphere. In the 4–5 μm range no fewer than five vibrational bands contribute to absorption (or emission): the two strong fundamentals v_1 and v_3 at 2321 and 2326 cm^{-1} , and the three overtone and combination bands $2v_2$, $v_2 + v_4$, and $2v_4$ at 1972, 2108, and 2226 cm^{-1} , respectively. These bands overlap, and together with strong Coriolis interactions and Fermi resonance make any analysis more difficult to perform. At 5 μm the PH_3 and CH_3D spectra coincide, and in order to obtain accurate column densities for both, absolute intensities and line broadening parameters need to be determined for both species. In this area supporting laboratory studies are required to obtain meaningful interpretation from both spacecraft and ground-based measurements. Thus, accurate quantification of PH_3 is of prime importance from the point of view of both tropospheric modeling and stratospheric chemistry. Consequently, IR line profile measurements appear then as a basic necessity in order to provide pertinent data usable by atmospheric chemist and modelers and the 5 μm region is of particular interest in being a window almost completely free of strong molecular absorptions. Also, in view of the increased level of accuracy required for the remote sensing of temperature it is of interest to perform detailed investigation of these parameters. In an attempt to unravel the PH_3 spectrum and to separate the CH_3D and PH_3 lines in Jupiter's spectrum, high resolution spectra of PH_3 at various temperatures and pressures have been obtained using a Fourier Transform Spectrometer. The low temperature eliminates high J lines from the spectra, thus simplifying them, as well as providing spectra which imitate actual planetary conditions. The high resolution available will aid in a more complete assignment. This paper will deal with room temperature conditions only. A nonlinear least-squares technique is applied to the bands to obtain lineshape parameters (position, intensity and broadening).

EXPERIMENTAL CONDITIONS

Several sets of PH₃ spectra were recorded under different conditions related with the PH₃ pressures and abundances, for further use in a fitting series of our spectral lines model. The spectra analyzed here were recorded with a Bomem DA 3.002 FTS instrument with actual resolution of 0.006 cm⁻¹, in the spectral range of 2000–2400 cm⁻¹, using an InSb detector cooled at liquid-nitrogen temperatures. Each spectrum comprised 30 co-added scans averaged to improve the signal to noise ratio. In addition, the empty cell spectrograms were obtained for further appropriate ratioing. We used absorption cells of 2 and 5 mm in length, i.e., relatively short in view of the strong absorption of PH₃ in this region, made out of stainless steel, as this is a very corrosive substance, with sapphire windows and indium gaskets at room temperature measured by means of a calibrated thermocouple that was simultaneous and continuously monitored on a strip chart recorder to ensure that a uniform temperature was being obtained. Those runs showing a deviation of more than one degree were discarded. The pressure was measured with a MKS made absolute Baratron pressured transducers. Phosphine is a very dangerous species, so special care has to be taken to handle it.

The spectral intensities, half-widths and wavenumbers were obtained by means of non-linear least-squared fitting techniques of each individual lines or multiplets, as appropriate. In short, each fitting was started by introducing an initial guess of these parameters from which a calculated spectrum was derived on the assumption of purely additive Voigt-shaped lines. The absorption profile so obtained was then convolved with the instrument function thus yielding a theoretical spectrum to be compared to the experimental one. The quality of the fit can be estimated by calculating the standard deviations of the “observed-line minus calculated-line” values, point by point, for the set of about 150 points that each line, or spectral segment under consideration, spanned. This deviation was only a fraction of 1%. By inspecting the plots of the fits and of the points-by-point differences we have found that the absolute magnitude of discrepancies never exceeded 1% for each digital point. The higher ones usually corresponded to the cases of very strong lines which probably can be ascribed to severe blending that could not be resolved by our instrument. These cases were not included in our report. We took special care to simultaneously fit all component of detected multiplets or “individual” lines together with neighboring lines contributing to the line profile. Our program is capable of doing fitting of ten lines at the same time when necessary. However, computer time is very long for these cases, and that is a reason for us to have concentrated more on fewer lines than actually observed, taking into account those relatively

isolated from contribution of far wings from neighbor lines. To date 138 out of 212 line intensities recorded at room temperature have been reported here.

RESULTS AND DISCUSSION

The measured intensities belonging to the strongest v_1 and v_3 were analyzed and 138 lines, single or only apparently slightly blended, were retained. The line assignments was taken from Ref. [1]. The results are as follows:

The band strength of v_1 and v_3 were calculated from

$$S_V^0 \text{ (in } \text{cm}^{-2} \text{ atm}^{-1} \text{ at } T) = \frac{8\pi^3 v_V}{3hc} Z_V L \mu_V \frac{T_0}{T}$$

with $L = 2.6875 \times 10^{19} \text{ cm}^{-3} \text{ atm}^{-1}$ at $T_0 = 273.15 \text{ K}$ and $Z_V = 1.018217$ at 300 K is the partition function.

For the v_1 band at 2321.118 cm^{-1} $\mu_1 = 0.0606$ (20) Debye and $S_1^0 = (85 \pm 4) \text{ cm}^{-2} \text{ atm}^{-1}$ at 300 K .

For the v_3 band at 2326.858 cm^{-1} $\mu_3 = 0.1150$ (12) Debye and $S_3^0 = (306 \pm 6) \text{ cm}^{-2} \text{ atm}^{-1}$ at 300 K .

The quoted errors for μ_V represent three standard deviations. Ref. [2] provide tools to calculate vibration-rotation intensities in the case of strongly interacting vibrational polyads. Fortunately, G.Tarrago^[3] calculated the values of μ_V for us.

With the experimental setup described we recorded the whole region specified at 294 K processing the data of five sets, with pressures from 3 to 10 torr of PH_3 . We report our study for 138 individual lines of the v_1 and v_3 bands in Table 1. At these pressures dominated by Doppler broadening we did not obtain significant half-width broadening coefficient, and so only report the average of the five set for absolute intensities, as shown in Table 1. With our model we can reproduce experimental digital point for individual lines with a goodness of fit better than 1%. However, that shows the statistic involved to reproduced the line profile, point by point. But from the average and the dispersion of the five set of measurements it is found an absolute error of about 5% for each intensity coefficient. Values, derived for the band strength S_1^0 and S_3^0 confirm the ratio of 0.28 previously determined for S_1^0/S_3^0 ^[1] but lead to an overall strength $S_1^0 + S_3^0$ about 15% lower than the value measured by Van Straten.^[4]

LINE INTENSITY MEASUREMENT

761

Table 1. Experimental Line Intensity Measurement for Phosphine

Order	Branch	J	K	Symmetry	Assignment			Upper Level			Wavenumber cm ⁻¹	Intensity cm ⁻¹ atm ⁻¹
					J'	K'	I'	Symmetry	Band			
1	(PP)	3	1	E	2	0	1	E	NU3	2300.439	0.5989	
2	(PP)	3	2	E	2	1	-1	E	NU3	2301.674	1.1200	
3	(PP)	3	3	A ⁺	2	2	-1	A ⁺	NU3	2302.976	1.5630	
4	(PP)	3	3	A ⁻	2	2	-1	A ⁻	NU3	2302.976	1.5630	
5	(QP)	2	0	A ⁺	1	0	0	A ⁺	NU1	2303.224	0.3910	
6	(QP)	2	1	E	1	1	0	E	NU1	2303.234	0.2831	
7	(RP)	2	0	A ⁺	1	1	1	A ⁺	NU3	2308.325	0.3583	
8	(PP)	2	1	E	1	0	1	E	NU3	2309.507	0.5360	
9	(PP)	2	2	E	1	1	-1	E	NU3	2310.745	1.0770	
10	(QQ)	11	7	E	11	7	0	E	NU1	2316.585	0.2223	
11	(QQ)	10	7	E	10	7	0	E	NU1	2317.265	0.3286	
12	(QQ)	10	6	A	10	6	0	A	NU1	2317.475	0.6125	
13	(RQ)	10	5	E	10	6	1	E	NU3	2317.836	0.2973	
14	(QQ)	9	7	E	9	7	0	E	NU1	2317.914	0.4802	
15	(QQ)	9	6	A	9	6	0	A	NU1	2318.081	0.9148	
16	(RQ)	9	5	E	9	6	1	E	NU3	2318.426	0.4594	
17	(PP)	1	1	E	0	0	1	E	NU3	2318.495	0.4610	
18	(QQ)	8	6	A	8	6	0	A	NU1	2318.640	1.3450	
19	(RQ)	8	5	E	8	6	1	E	NU3	2318.961	0.6902	
20	(RQ)	9	4	E	9	5	1	E	NU3	2318.979	0.4940	
21	(RQ)	7	5	E	7	6	1	E	NU3	2319.430	0.7906	
22	(RQ)	8	4	E	8	5	1	E	NU3	2319.544	0.5575	

(continued)

Table I. Continued

Order	Branch	Assignment			Upper Level			Band	Wavenumber cm ⁻¹	Intensity cm ⁻¹ atm ⁻¹
		J	K	Symmetry	J'	K' '	Symmetry			
23	(R)Q	10	2	E	10	3	1	E	NU3	2319.855
24	(Q)Q	5	5	E	5	5	0	E	NU1	2320.019
25	(R)Q	7	4	E	7	5	1	E	NU3	2320.053
26	(Q)Q	4	3	A	4	3	0	A	NU1	2320.281
27	(R)Q	8	3	A ⁻	8	4	1	A ⁺	NU3	2320.320
28	(R)Q	8	3	A ⁺	8	4	1	A ⁻	NU3	2320.320
29	(Q)Q	4	4	E	4	4	0	E	NU1	2320.379
30	(R)Q	6	4	E	6	5	1	E	NU3	2320.502
31	(Q)Q	3	2	E	3	2	0	E	NU1	2320.611
32	(Q)Q	1	1	E	1	1	0	E	NU1	2321.040
33	(R)Q	8	2	E	8	3	1	E	NU3	2321.214
34	(R)Q	11	0	A ⁺	11	1	1	A ⁻	NU3	2321.356
35	(R)Q	9	1	E	9	2	1	E	NU3	2321.497
36	(R)Q	10	0	A ⁺	10	1	1	A ⁻	NU3	2322.111
37	(R)Q	4	3	A	4	4	1	A	NU3	2322.199
38	(R)Q	6	2	E	6	3	1	E	NU3	2322.347
39	(P)Q	12	2	E	12	1	-1	E	NU3	2322.634
40	(P)Q	10	1	E	10	0	1	E	NU3	2322.984
41	(R)Q	4	2	E	4	3	1	E	NU3	2323.211
42	(R)Q	6	1	E	6	2	1	E	NU3	2323.370
43	(P)Q	11	2	E	11	1	-1	E	NU3	2323.423
44	(R)Q	8	0	A ⁺	8	1	1	A ⁻	NU3	2323.467
45	(R)Q	3	2	E	3	3	1	E	NU3	2323.533
46	(P)Q	9	1	E	9	0	1	E	NU3	2323.731

(continued)

Table I. Continued

Order	Branch	Assignment			Upper Level			Band	Wavenumber cm ⁻¹	Intensity cm ⁻¹ atm ⁻¹
		J	K	Symmetry	J'	K'	l'			
75	(P)Q	3	2	E	3	1	-1	E	NU3	2328.118
76	(P)Q	6	3	A-	6	2	-1	A+	NU3	2328.216
77	(P)Q	8	4	E	8	3	-1	E	NU3	2328.332
78	(P)Q	2	2	E	2	1	-1	E	NU3	2328.378
79	(P)Q	5	3	A+	5	2	-1	A-	NU3	2328.617
80	(P)Q	7	4	E	7	3	-1	E	NU3	2328.972
81	(P)Q	4	3	A+	4	2	-1	A-	NU3	2329.062
82	(P)Q	4	3	A-	4	2	-1	A+	NU3	2329.093
83	(P)Q	9	5	E	9	4	-1	E	NU3	2329.257
84	(P)Q	3	3	A+	3	2	-1	A-	NU3	2329.418
85	(P)Q	3	3	A-	3	2	-1	A+	NU3	2329.428
86	(P)Q	6	4	E	6	3	-1	E	NU3	2329.540
87	(P)Q	9	6	A	9	5	-1	A	NU3	2329.830
88	(P)Q	5	4	E	5	3	-1	E	NU3	2330.035
89	(P)Q	4	4	E	4	3	-1	E	NU3	2330.457
90	(P)Q	7	5	E	7	4	-1	E	NU3	2330.561
91	(P)Q	6	5	E	6	4	-1	E	NU3	2331.091
92	(P)Q	5	5	E	5	4	-1	E	NU3	2331.545
93	(P)Q	7	6	A	7	5	-1	A	NU3	2331.684
94	(P)Q	9	7	E	9	6	-1	E	NU3	2331.831
95	(P)Q	6	6	A	6	5	-1	A	NU3	2332.400
96	(P)Q	8	7	E	8	6	-1	E	NU3	2332.696
97	(P)Q	7	7	E	7	6	-1	E	NU3	2333.450
98	(P)Q	9	8	E	9	7	-1	E	NU3	2333.711

LINE INTENSITY MEASUREMENT

765

99	(R)R	0	0	A ⁺	1	1	1	1	A ⁺	1	1	1	1	NU3	2335.034	0.8209
100	(P)Q	9	9	A ⁺	2	0	0	0	A ⁺	-1	-1	-1	-1	NU3	2335.644	0.3376
101	(Q)R	1	0	E	2	1	0	0	E	0	0	0	0	NU1	2338.653	0.4070
102	(Q)R	1	1	E	2	2	1	1	E	1	1	1	1	NU1	2338.664	0.2888
103	(R)R	1	1	E	2	2	1	1	E	1	1	1	1	NU3	2342.653	1.1410
104	(R)R	1	0	A ⁺	2	1	1	1	A ⁺	1	1	1	1	NU3	2343.754	1.1490
105	(R)R	2	2	E	3	3	1	1	E	1	1	1	1	NU3	2350.237	1.7460
106	(R)R	2	1	E	3	2	1	1	E	1	1	1	1	NU3	2351.298	1.1620
107	(R)R	2	0	A ⁺	3	1	1	1	A ⁺	1	1	1	1	NU3	2352.377	1.4134
108	(P)R	2	1	E	3	0	1	1	E	1	1	1	1	NU3	2353.584	0.3331
109	(Q)R	3	3	A	4	3	0	0	A	1	1	1	1	NU1	2355.879	0.9009
110	(R)R	3	2	E	4	3	1	1	E	1	1	1	1	NU3	2358.802	1.5620
111	(R)R	3	1	E	4	2	1	1	E	1	1	1	1	NU3	2359.852	1.1140
112	(R)R	3	0	A ⁺	4	1	1	1	A ⁺	1	1	1	1	NU3	2360.904	1.5290
113	(P)R	3	1	E	4	0	1	1	E	1	1	1	1	NU3	2362.130	0.4318
114	(Q)R	4	2	E	5	2	0	0	E	1	1	1	1	NU1	2364.134	0.5425
115	(Q)R	4	3	A	5	3	0	0	A	1	1	1	1	NU1	2364.281	1.4990
116	(Q)R	4	4	E	5	4	0	0	E	1	1	1	1	NU1	2364.315	0.8792
117	(R)R	4	4	E	5	5	1	1	E	1	1	1	1	NU3	2365.370	1.8280
118	(R)R	4	3	A	5	4	1	1	A	1	1	1	1	NU3	2366.299	3.1770
119	(R)R	4	2	E	5	3	1	1	E	1	1	1	1	NU3	2367.280	1.2800
120	(R)R	4	0	A ⁺	5	1	1	1	A ⁺	1	1	1	1	NU3	2369.333	1.5390
121	(P)R	4	2	E	5	1	1	1	E	1	1	1	1	NU3	2371.816	0.3051
122	(Q)R	5	2	E	6	2	0	0	E	1	1	1	1	NU1	2372.333	0.3916
123	(R)R	5	5	E	6	6	1	1	E	1	1	1	1	NU3	2372.390	2.1270
124	(Q)R	5	4	E	6	4	0	0	E	1	1	1	1	NU1	2372.538	1.0980
125	(Q)R	5	3	A	6	3	0	0	A	1	1	1	1	NU1	2372.592	1.7840

(continued)

Table 1. Continued

Order	Branch	J	K	Symmetry	Assignment			Upper Level			Wavenumber cm ⁻¹	Band	Intensity cm ⁻¹ atm ⁻¹
					J'	K'	I'	Symmetry					
126	(Q)R	5	5	E	6	5	0	E	NUI	2373.183	0.5952		
127	(S)R	5	2	E	6	4	-1	E	NU3	2373.279	0.3077		
128	(R)R	5	4	E	6	5	1	E	NU3	2373.850	1.1690		
129	(R)R	5	3	A	6	4	1	A	NU3	2374.718	2.4490		
130	(R)R	5	2	E	6	3	1	E	NU3	2375.671	1.0380		
131	(R)R	5	1	E	6	2	1	E	NU3	2376.688	0.9674		
132	(R)R	5	0	A ⁺	6	1	1	A ⁺	NU3	2377.665	1.2790		
133	(Q)R	6	2	E	7	2	0	E	NUI	2380.393	0.3950		
134	(Q)R	6	5	E	7	5	0	E	NUI	2380.436	1.7970		
135	(Q)R	6	1	E	7	1	0	E	NUI	2380.512	0.5514		
136	(Q)R	6	0	A ⁺	7	0	0	A ⁺	NUI	2380.530	0.5011		
137	(Q)R	6	4	E	7	4	0	E	NUI	2380.655	1.1110		
138	(Q)R	6	3	A	7	3	0	A	NUI	2380.818	1.6990		

CONCLUSIONS

Summarizing, we have obtained the spectrum of PH_3 in the important $5\text{ }\mu\text{m}$ observational window of Jupiter, between 2200 and 2400 cm^{-1} and measured the intensity coefficients at 294 K for individual lines. The number of 138 lines reported is only limited by the rather time consuming computer processing involved. Our fitting procedure allowed us to accurate reproducing individual lines or set of lines within limited segments. From five relevant sets of spectra involving different experimental conditions we estimate the absolute error for any of our retrieved intensity coefficients to be about 5%. As PH_3 is known to be present in Jupiter, as well as in Saturn, the investigation of line parameters in the laboratory is hence of importance for astrophysical applications.

REFERENCES

1. Baldacci, A.; Malathy Devi, V.; Narahari Rao, K; Tarrago, G. *J. Mol. Spectrosc.* **1980**, *88*, 311–322.
2. Tarrago, G.; Ulenikov, O.N.; Poussigue, G. *J. Physique.* **1984**, *45*, 1429–1447.
3. Tarrago, G. Private communication.
4. Van Straten, A.J. *J. Molec. Spectrosc.* **1977**, *65*, 202.

Received December 11, 2001

Accepted June 15, 2002